Pattern formation and growth during floral organogenesis: HUELLENLOS and AINTEGUMENTA are required for the formation of the proximal region of the ovule primordium in Arabidopsis thaliana.

نویسندگان

  • K Schneitz
  • S C Baker
  • C S Gasser
  • A Redweik
چکیده

Our understanding of the molecular mechanisms that regulate and integrate the temporal and spatial control of cell proliferation during organ ontogenesis, particularly of floral organs, continues to be primitive. The ovule, the progenitor of the seed, of Arabidopsis thaliana has been used to develop an effective model system for the analysis of plant organogenesis. A typical feature of a generalized ovule is the linear arrangement of at least three distinct elements, the funiculus, chalaza and nucellus, along a proximal-distal axis. This pattern is supposed to be established during the early proliferative phase of ovule development. We provide genetic evidence that the young ovule primordium indeed is a composite structure. Two genes, HUELLENLOS and AINTEGUMENTA have overlapping functions in the ovule and differentially control the formation of the central and proximal elements of the primordium. The results indicate that proximal-distal pattern formation in the Arabidopsis ovule takes place in a sequential fashion, starting from the distal end. Furthermore, we show that HUELLENLOS also regulates the initiation and/or maintenance of integument and embryo sac ontogenesis and interestingly prevents inappropriate cell death in the young ovule.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dissection of sexual organ ontogenesis: a genetic analysis of ovule development in Arabidopsis thaliana.

Understanding organogenesis remains a major challenge in biology. Specification, initiation, pattern formation and cellular morphogenesis, have to be integrated to generate the final three-dimensional architecture of a multicellular organ. To tackle this problem we have chosen the ovules of the flowering plant Arabidopsis thaliana as a model system. In a first step towards a functional analysis...

متن کامل

SHORT INTEGUMENTS 2 promotes growth during Arabidopsis reproductive development.

The short integuments 2 (sin2) mutation arrests cell division during integument development of the Arabidopsis ovule and also has subtle pleiotropic effects on both sepal and pistil morphology. Genetic interactions between sin2 and other ovule mutations show that cell division, directionality of growth, and cell expansion represent at least partially independent processes during integument deve...

متن کامل

SEUSS and AINTEGUMENTA mediate patterning and ovule initiation during gynoecium medial domain development.

The Arabidopsis (Arabidopsis thaliana) gynoecium, the female floral reproductive structure, requires the action of genes that specify positional identities during its development to generate an organ competent for seed development and dispersal. Early in gynoecial development, patterning events divide the primordium into distinct domains that will give rise to specific tissues and organs. The m...

متن کامل

The BELL1 gene encodes a homeodomain protein involved in pattern formation in the Arabidopsis ovule primordium

Ovule development in Arabidopsis involves the formation of three morphologically defined proximal-distal pattern elements. Integuments arise from the central pattern element. Analysis of Bell 1 (Bel 1) mutant ovules indicated that BEL1 was required for integument development. Cloning of the BEL1 locus reveals that it encodes a homeodomain transcription factor. Prior to integument initiation, BE...

متن کامل

Novel functional roles for PERIANTHIA and SEUSS during floral organ identity specification, floral meristem termination, and gynoecial development

The gynoecium is the female reproductive structure of angiosperm flowers. In Arabidopsis thaliana the gynoecium is composed of two carpels that are fused into a tube-like structure. As the gynoecial primordium arises from the floral meristem, a specialized meristematic structure, the carpel margin meristem (CMM), develops from portions of the medial gynoecial domain. The CMM is critical for rep...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Development

دوره 125 14  شماره 

صفحات  -

تاریخ انتشار 1998